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Gravity-driven granular flow of slightly frictional particles down an inclined, bumpy 
chute is studied. A modified kinetic model which includes the frictional energy loss 
effects is used, and the boundary conditions for a bumpy wall with small friction 
are derived by ensuring the balance of momentum and energy. At the free surface, 
the condition of vanishing of the solid volume fraction is used. The mean velocity, 
the fluctuation kinetic energy and the solid volume fraction profiles are evaluated. 
It is shown that steady granular gravity flow down a bumpy frictional chute could 
be achieved at arbitrary inclination angles. The computational results also show that 
the slip velocity may vary considerably depending on the granular layer height, the 
surface boundary roughness, the friction coefficient and the inclination angles. The 
model predictions are compared with the existing experimental and simulation data, 
and good agreement is observed. In particular, the model can well predicate the 
features of the variation of solid volume fraction and fluctuation energy profiles for 
different particle-wall friction coefficients and wall roughnesses. 

1. Introduction 
The inclined chute serves as an important component of many industrial solids 

transport processes in addition to providing a bench mark for comparison of theoret- 
ical predictions with experimental data. Because of its significance, granular gravity 
flows have been the subject of a number of investigations. Over the past two decades, 
theoretical analysis of gravity-driven rapid particulate flows have been performed 
by Savage (1979), Ma & Ahmadi (1985), Richman & Marciniec (1990), Johnson, 
Nott & Jackson (1990), Anderson & Jackson (1992), Gudhe, Rajagopal & Massoudi 
(1994), Abu-Zaid & Ahmadi (1993) and Oyediran et al. (1994). Using the molecular 
dynamics procedure, Campbell & Brennen (1985), Walton et al. (1988) and Walton 
(1992) presented digital simulation results for granular flow properties such as solid 
volume fraction, velocity and fluctuation kinetic energy (granular temperature) for 
chute flows. These computer simulations also provided insights into the mechanisms 
that govern the rapid flow of granular materials. Experimental studies of granular 
gravity flows were reported by Augenstein & Hogg (1978), Savage (1978, 1979), 
Campbell, Brennen & Sabersky (1985), Drake & Shreve (1986), Patton, Brennen & 
Sabersky (1987), Johnson et al. (1990) and Drake (1990, 1990) among others. The 
experimental data for solid volume fraction and velocity profiles provided by these 
studies play a vital role in verifying the existing models. 
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While considerable progress toward understanding the behaviour of granular grav- 
ity flows has been made, most earlier models were limited to frictionless, slightly 
inelastic particles and a specific flow regime. However, many flows of practical 
interest fall into the intermediate flow regime where both frictional contacts and 
particle-particle collisions are significant. Johnson et al. (1990) did account for the 
effects of enduring frictional contact in their works by adding the Coulomb friction 
law to the granular kinetic and collisional stresses in their study of gravity flows. 
This model essentially combines the available constitutive theories for rapid and slow 
granular flows through a linear superposition. Abu-Zaid & Ahmadi (1990) developed 
a kinetic model which incorporated the effect of frictional energy losses during colli- 
sions. Cao & Ahmadi (1995) used this model to analyse granular Couette flows and 
the results showed that the effect of frictional energy losses is significant. 

Solid wall boundary conditions for rapid granular flows were studied by Hui et al. 
( 1984) using heuristic momentum and energy balance equations. Similar boundary 
conditions for disk flows were described by Pasquarell et al. (1988). Ma & Ahmadi 
(1985) and Abu-Zaid & Ahmadi (1993) also analysed shear flows of granular materials 
using semi-empirical boundary conditions. These studies showed that the no-slip 
boundary condition is reasonable only when the boundary surface is sufficiently rough. 
Jenkins & Richman (1985) developed a set of kinetic-based boundary conditions for 
two-dimensional smooth circular disk flows in the neighbourhood of a bumpy wall. 
Later this work was extended to flows of spherical particles by Richman (1988) and 
Hanes, Jenkins & Richman (1988). More recently, Jenkins (1992) proposed a set of 
boundary conditions for rapid granular flows over a flat, frictional wall. 

For the free surface boundary condition, most earlier works assumed that the stress 
and the energy flux vanish at a finite height (for which the solid volume fraction need 
not be zero). Such a free surface boundary condition, while avoiding the stiffness 
problem in the numerical solution, is obviously not exact. In reality, granular layer 
height continues until the condition of zero solid volume fraction is reached. Recently, 
using the momentum and energy balance at the interface between colliding and freely 
flying grains, Jenkins & Hanes (1993) developed a boundary condition for granular 
temperature (fluctuation kinetic energy). 

In this paper, a kinetic model that incorporates frictional energy losses is used 
to analyse the steady, fully developed gravity-driven rapid granular flows down a 
bumpy, frictional inclined surface. The modified kinetic-based boundary condition 
of Richman (1988) that accounts for the frictional energy losses due to interactions 
between the grains and the boundaries is derived and used in the analysis. On the free 
surface, the boundary condition that allows for the height to continue to the point 
of zero solid volume fraction is applied. The particles are treated as identical, nearly 
elastic and slightly frictional spheres. Variation between particle-particle and particle- 
wall collisional properties is also allowed in the model. An iterative computational 
procedure is developed and is used to solve the equations of motion. The predicted 
velocity, solid volume fraction and fluctuation kinetic energy profiles for different 
inclination angles, flow heights, friction coefficients and surface boundary geometry 
(roughness) are presented in graphical forms. It is shown that, with the new wall 
and free surface boundary conditions, the model predictions are in good agreement 
with the available experimental data and molecular dynamics simulations results. The 
effects of frictional energy losses on the shape of solid volume fraction and fluctuation 
kinetic energy profiles are also discussed. 
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2. Governing equations 

conservation of mass 
The equations governing the motion of granular materials during rapid flows are: 

balance of momentum 

conservation of energy 

Here u j  is the mean velocity vector, p is the mass density, z j j  is the stress tensor, K j  
is the fluctuation energy flux vector, k is the fluctuation energy per unit mass, and 
c is the collisional dissipation rate per unit mass. For rough spherical particles with 
small friction coefficient, the disspation rate is given by Abu-Zaid & Ahmadi (1990): 

where r is the coefficient of restitution, p is the coefficient of friction, d is the particle 
diameter, v is the solid volume fraction, a0 = 3.908 is a constant, and x is the radial 
distribution function given by Ahmadi & Ma (1986): 

1 + 2 . 5 ~  + 4 . 5 9 ~ ~  + 4 . 5 2 ~ ~  
[l  - (v/v,)3]0.678 x =  

in which v, = 0.644 is the limiting maximum solid volume fraction. 

study. Accordingly, the stress tensor is given as 
The constitutive equations as given by Abu-Zaid & Ahmadi (1990) are used in this 

where 

in which po is the density of grains and p = pov. 
The energy-flux vector K j  given by Abu-Zaid & Ahmadi (1990) is 

dk  (1 + r)(l  - r + 2p) k 8~ 
1 + r 2  --I v axi 

where 

K = ;Po(  1 + r2)(xp1 + 4 . 8 ~  + 1 2 . 1 2 ~ ~ ~ ) .  (12) 

This completes the summary of the governing equations. 
The kinetic formulation outlined is applicable to cases where the friction coefficient 

is small so that slip during collision occurs and the rotational effects of particles 
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FIGURE 1. Geometry of the bumpy boundary. 

are insignificant. The theory is not intended for analysing flows of highly frictional 
granules, for which the effects of particle rotation and contact forces due to the 
enduring friction become important. In Appendix A, it is shown that the ratio of 
rotational fluctuation kinetic energy to the translational fluctuation kinetic energy is 
of the order of p2. Furthermore, according to Lun & Savage (1987), for an infinitely 
large frictional coefficient (when the slip velocity is zero), the rotational energy is less 
than 25% of the translational energy. Therefore, neglecting the rotational effects of 
particles for small frictional coefficient does not lead to a significant error. 

3. Boundary conditions at wall the and free surfaces 
In order to solve equations (1)-(3) for realistic flows, proper boundary conditions 

must be prescribed. For granular flows, the experimental and digital simulation 
results indicate that occurrence of slip at the wall is a common feature. It is now 
well understood that the flow behaviour at surface boundaries is an integral part of 
the solution for the entire flow field. Because of the slip velocity, a solid boundary 
performs shear work and generates granular fluctuation kinetic energy at a rate equal 
to the product of the wall shear stress and the slip velocity. At the same time, 
particulate collisions with the wall lead to energy dissipation D. In addition, the 
collisions of the flow particles with the solid boundary generate a flow momentum 
deficiency M .  For a unit area of a boundary that interacts with the flow and has a 
unit inward normal 1, the balance of momentum at the boundary requires that 

M = I Z . z  (13) 

M . v -  D z K . 1  (14) 

and the statement of conservation of energy becomes 

where v = V b  - u ,  is the slip velocity with Vb being the boundary velocity and u, 
the flow velocity at the wall. 

Expressions for M and D depend on the details of the geometry of the boundary 
surface. For the bumpy boundary shown in figure 1, the expressions are evaluated in 
Appendix B, and are 

Mi = $opk i i  + ( 2 ~ ~ ~ / ( 3 ~ k ) ' ~ ~ ) [ 2 c o s e c ~ 8 ( 1  - cos 0) - cos 01, { 
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where 

(%) B = n(1 + 5/8vx)/12& 00 = ( O  + d)/2, 6 = arcsin 

with 

and 

I,, = $(2[cosec26(1 -COS e)+cos 6 ] / Z l A k  + [2cosec20(1 -COS 6) -COS d ] ( Z , Z k  +t,tk)) ,  (19) 

l l j k  = (sin26 - 2 ) 1 , 1 , / z k  - sin2 6[ii(z,lk + t j t k )  + Lj (zkz1 + tkt,) + & ( l , z j  + t l t j ) ] .  (20) 

Here, t = (t,, t,, tk), z = (z,, z,, i k )  , and 1 = (A,, A,, 1,) form an orthonormal triad 
as shown in figure 1, rw is the coefficient of restitution between particles and the wall, 
pw is the friction coefficient of the wall, v,  is the slip velocity component, and co is 
a factor that accounts for the effects of excluded area (collisional shielding) on the 
frequency of collisions and the average solid volume fraction. Note that equation 
(15) is a modified version of the one given by Richman (1988) as suggested by Cao 
& Ahmadi (1995) to account for the wall frictional energy losses. This equation was 
obtained by assuming that there is frictional slip during the particle collision with the 
wall. Clearly, when rw = 1, equation (15) shows that there is a dissipation of energy 
due to frictional slip. This boundary condition is applicable to particles with small 
friction coefficient for which slip during collision occurs, and the particle rotational 
effect is negligible. 

In Appendix B, a detailed derivation of boundary conditions for a slightly frictional 
bumpy wall is presented. For small friction coefficients, the results are identical to 
equations (15) and (16) with a factor of n/4 being taken as unity. 

To ensure that no particle ever collides with the flat part of the wall, d^ must be less 
than -1 + (1 + 28)'/2. The angle 6 in the above equations is a natural measure of the 
wall roughness. By increasing d^ or decreasing B, additional surface area of the wall 
becomes available for collisions, and consequently the boundary becomes effectively 
more rough. 

For the flat frictional boundary, at the free surface the energy flux must vanish. 
That implies 

Furthermore, the stress-free surface conditions require that the total normal and 
tangential stresses acting at the free surface vanish: 

I - K = O .  (21) 

The elevation of the free surface is obtained from the condition that the solid volume 
fraction becomes zero. 

The experimental results of Drake & Shreve (1986) and others show that there is a 
saltation zone near the free surface. In this region, the solid volume fraction is quite 
low and decreases toward the diffuse free surface. The numerical calculation in this 
region often indicates that the stress retains quite large values to within a fraction 
of a particle diameter of the nominal free surface, after which it drops rapidly to 
zero. This introduces a stiffness problem into the numerical solution. In order to 
avoid this difficulty, some authors abandoned satisfying the stress-free condition and 
used some approximating assumptions at the free surface. However, these often led 
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FIGURE 2. Gravity flow down an inclined chute. 

to inaccuracy in the solutions (Johnson et al. 1990). The present paper shows that as 
long as a proper grid and numerical algorithm are adopted, the numerical difficulty 
caused by using the stress-free conditions may be avoided. 

4. Steady gravity granular flow 
In this section, the special case of gravity granular flows down an inclined bumpy 

chute with an inclination angle a as shown in figure 2 is analysed. It is assumed that 
the distance from the incline to the free surface is H (which itself is generally an 
unknown). A Cartesian coordinate system with y being the distance from the lower 
wall is used. For a steady, fully developed flow, it may be assumed that 

= [u(y), 0, 01, k = 4 Y ) ,  v = V ( Y ) ,  K = 10, Kz(y) ,  01, 

~ x x ( V )  ~ x Y ( Y )  ) , ] (24) 
0 

where u(y )  is the mean velocity along the incline, and zXY = zYx.  
For simplicity, let 

X Y  (25) N = Z Y Y ,  s = --z 

and introduce the following non-dimensional variables : 

Here g is the vertical acceleration due to gravity. 
Substituting equations (4)-( 12), and (24)-(26) into (1)-(3), the balance of mass 

(1) and the z-component of the balance of momentum (2) are satisfied identically. 
The x- and y-components of the momentum equation and statement of balance of 
fluctuation energy, respectively, become 

dfildq = -V C O S ~ ,  

dS/dq = -v sina, 

dK/dq - idG/dq + 2 = 0, 

A 
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where 

in which functions Fi are defined as 

0.1422(1 + r2)(X-' + 4 . 8 ~  + 1 2 . 1 2 ~ ~ )  

V F O ( V )  
F3(v) = (37) 

Note that in equation (2), the diffusion of energy due to the concentration gradient is 
neglected. 

From (30), (31), one finds 

(38) 
d6 - vwF0 9 

Using the expressions for fi, 3, 2 k ,  and d6/dq, as given by (30)-(33) and (38) in 
equation (29), the final form of the energy equation follows: 

- -- - 
dq F1 fi. 

4.1. Boundary conditions 
At the free surface (q  = fi), the following boundary conditions must be satisfied: 

v = 0, (40) 
S=O,  K = 0 ,  (41) 
A A 

where 2 = H / d  is the non-dimensional flow height. Equations (40) and (41) imply 
that the normal stress fi and gradient of fluctuation energy (dwldq) are zero at the 
free surface. 

At the base ( q  = 0), the velocity boundary condition is 

(42) 
A h  u = 0,. 

Using the non-dimensional variables, the momentum boundary condition (13) at the 
wall may be restated as 

(43) 

where 

[2cosec26( 1 - cos 6) - cos 01, 
4 

GI = ___ 
3( 3 7c)1/2 

(45) 

2 0 0  

(37c)'I2 a 
G2 = ~- { 
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The energy boundary condition (14) now becomes 
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$fix - o C , v , w ~ ,  = 2F3(v,)w;(dw/dy), (47) 

where 
8 c -- - 3(3n),,2 (1 - r ,  + 2pw)(1 - cos 8)cosec28. 

In these equations, the subscript w denotes the value of a variable at the wall. 
Eliminating co from the boundary conditions (43), (44) and (47) and using the 

equation (30) for the normal stress, the momentum and energy boundary conditions, 
respectively, become 

and 

( Z ) ,  = F3(v,) 1 [ (;) fix - i.,...] 

Note that Jenkins (1992) proposed an interesting boundary condition for a frictional 
flat surface. For the limit of small frictional coefficients (sliding case), Jenkins' 
boundary condition reduces to $/fi = p,. The equations of balance of momentum 
as given by (27) and (28) then imply that steady-state gravity flow is possible only for 
the inclination angle of a = tan-' p, (this is an obvious result for a rigid block sliding 
down an incline). Therefore, to achieve steady flows at inclination angles other than 
tan-' p,,., a small amount of surface roughness (bumps) is required. The other option 
is to include the effect of sustained multiple contacts among particles in the model 
(e.g. as suggested by Johnson et al. 1990). In this paper, only the consequence of the 
first alternative is explored. 

5. Computational model 

H and gives 
For convenience in the numerical solutions, equation (27) is integrated from y to 

vFO(V)W 2 = - i" v cosadq. (51) 

It should also be pointed out that regardless of the distribution of v(y),  from 
equations (27), (28) and boundary condition (40) and (41), it follows that 

- = tana = const. (52) 
i 
r;J 

It is also recognized that there are rather large velocity and solid volume fraction 
gradients near the solid wall and the free surface. To avoid the stiffness problem in 
the numerical computation and obtain accurate solutions in these critical regions, the 
grid coordinates are selected by using 

(53) 

This allows for a dense distribution of grid point near the boundaries. Here a total 
of 150 grid points are used. 
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Using the standard, second-order-accurate, central finite difference for the second 
derivative at every grid point, equations (38)  and (39) lead to 

In equations (53)-(58), the subscript j identifies the grid point in the finite difference 
mesh, the superscript k denotes the order of iteration and hj  = qj+l - q j  is the spatial 
increment. 

Boundary conditions (41), (49) and (50) lead to 

where subscript 1 stands for the first (wall) grid point, and n stands for the last (free 
surface) grid point. 

Using the trapezoidal rule, equation (51) may be restated as 
n- 1 

[VJF(V~)W:](k+') == -; Cos c [ h ~ ( v i  + v ~ + l ) ] ( ~ + * )  j = 1, 2, 3,  ' . . ,  n - 1 (62) 
I=] 

in which v, = 0. 
The iterative scheme of solution uses the following steps: 

(i) At the initial step k = 0, the initial approximate values of ijio), v y ) ,  zf" and 

(ii) Equations (55), (59) and (60) are used to find w?+') ( j  = 1, 2, 3, . . . , n ). 
(iii) Using the Newton-Raphson iterative method, equation (62) is solved for v?"' 

(iv) Equation (61) is then used to evaluate vLk+l). 
(v) A fourth-order Runge-Kutta scheme is used for evaluating u ~ ' "  

w(') ( j = 1, 2, . . . , n)  are specified. 
I 

( j = 1 ,  2, 3, . . ' )  n - 1 ) .  

( j  = 1, 2, 3 , .  . . , n )  from equation (54). 
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FIGURE 3. Variations of (a)  mean velocity, ( b )  solid volume fraction and (c) SR-fluctuation kinetic 
energy profiles for a gravity flow with ri = 42.75", r ,  = r = 0.84, pw = p = 0.41, 9 = 0.4, d = 1, 
H / d  = 16. Comparison with the results of Drake & Shreve. 

(vi) Steps (ii) to (v) are repeated until values of Ox, vj, u j  , wj ( j = 1, 2, ..., n ) 
converge. 

If the changes in the variables are everywhere less than lop4 of their absolute values 
between two consecutive iterations, the solutions are considered to be converged. 

It is found that convergence can be rapidly reached by the use of an over-relaxation 
method. That is, the new values of w?"), v?") and iYkfl) are obtained by the following 
linear combinations: 

(63) 

(64) 

(65) 

j = 1, 2, 3, ..., n, I Wj!+l) = (1 - Oh,)$) + @,(wy+')),, 

V!kf') I = (1 - @,,)v:") + @,,(vy+')),, 

$(k+l)  = (1 - 0,)p + @,($+l)),, 

where Ow, 0, ,  0, are relaxation coefficients, and the subscript c denotes the calculated 
values of variables after k + 1 iterations. 

6. Results and discussion 
For several inclination angles, granular layer heights and material properties, 

granular flows down a bumpy inclined chute are studied, and the mean velocity, solid 
volume fraction and square-root (SR) fluctuation kinetic energy profiles are evaluated. 
The results are presented in graphical form and discussed. 

In order to test the present model, we first compare the predicted mean velocity, 
solid volume fraction and SR-fluctuation kinetic energy profiles with the experimental 
data of Drake & Shreve (1986) for an inclination angle of CI = 42.75" in figure 3. Drake 
& Shreve's experiment was carried out in an inclined glass-walled channel 3.7 m long 
and 6.5 mm wide using 6 mm diameter cellulose-acetate spherical particles. The bed 
consisted of spheres like those in the flows, which were glued with random spacing of 0 
to 5 mm to an aluminium bar. A granular layer height of H/d=16, d = 1, r = rw = 0.84 
and p = pw = 0.4 as were given in the experiment are assumed in the present analysis. 

h 
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FIGURE 4. Variations of (a)  mean velocity, ( b )  solid volume fraction and (c )  SR-fluctuation kinetic 
energy profiles for a gravity flow with CI = 17", r = rw = 0.9, p = pw = 0.45, H / d  = 20. Comparison 
with the results of Johnson et al. 
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FIGURE 5. As figure 4 but for H / d  = 

0 0.2 0.4 0.6 0.8 1.0 

W 

6. 

To simulate the randomly spaced gaps between the wall particles, three different 
values of ŝ  = 0, 0.2 and 0.4 are used and the corresponding computed mean velocity, 
solid volume fraction and SR-fluctuation kinetic energy profiles are presented in 
figure 3. For comparison, the two-dimensional solid volume fraction v2D of Drake & 
Shreve is converted into the equivalent three-dimensional data using ~ 3 ~ = 4 v ~ ~ / 3 7 1 ~ / ~ ,  
as was suggested by Campbell & Gong (1986), and the results are shown in figure 
3(b). In figure 3(c), the granular temperature, T, of Drake & Shreve is converted into 
fluctuation kinetic energy using k = 3T/2. Figure 3 shows that the predicted velocity 
and solid volume fraction profiles are in reasonable agreement with the experimental 
data. In particular, the monotonic increasing trend of v toward the wall and the 
small amount of slip velocity are well predicted by the model. The model, however, 
overestimates the experimental data for the SR-fluctuation kinetic energy near the 
wall. As noted before, the experiment was performed for a monolayer of granular 
particles in a two-dimensional channel, while the present model predictions are for 
a fully three-dimensional particulate flow. Therefore, certain deviations should be 
expected. 

Johnson et a/. (1990) also performed a series of experiments for gravity flow of 
1 mm diameter glass beads down an inclined chute with a smooth aluminium plate. 
The chute was 1.4 m long and 6.35 cm wide, and was bounded by vertical glass 
walls 12.7 cm high. Their mean velocity data for an inclination angle of CI = 17" and 
H / d  = 20 are reproduced in figure 4. The present model predictions for the same 
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FIGURE 6. Non-dimensional (a) mean velocity, ( b )  solid volume fraction and (c) SR-fluctuation 
kinetic energy profiles for a gravity chute flow with CI = 17", s  ̂ = 0, d = 10, r = r ,  = 0.85, 
p = p,, = 0.4, H / d  = 9. Comparison with the simulation results of Walton (1992). 

h 

conditions are also plotted in this figure for comparison. Here r = 0.91 and p = 0.45 
for glass beads as suggested by Johnson et al. (1990) are used in the numerical 
simulation. The smooth wall surface is simulated by taking the wall parameters as 
5 = 0 and d^ = 10. Thus, the bumps on the wall are one tenth the size of the grains 
in the flow and are tightly packed. Figure 4(a) shows that the calculated velocity 
profile is in good agreement with the experimental data. The predicted slip at the 
wall, however, is slightly higher than that observed in the experiment. 

From figure 4(h), it is observed that the solid volume fraction remains almost a 
constant across the chute with a sharp gradient near the free surface. The dashed 
line in this figure corresponds to the mean solid volume fraction of 0.65 reported 
in the experiment of Johnson et al. (solid volume fraction and fluctuation kinetic 
energy profiles were not measured). The predicted mean solid volume fraction here is 
V = 0.641 which is quite close to the experimental value. 

The variation of SR-fluctuation kinetic energy over the incline is shown in figure 
4(c). It is observed that the SR-fluctuation energy has a large value near the wall 
and decreases rapidly to about 20% of its wall value at a distance of 0.2H. It then 
decreases gradually toward the free surface. Unfortunately, there are no experimental 
data for the fluctuation kinetic energy for comparison in this case. 

Figure 5 presents the model predictions for H / d  = 6 and a comparison with the 
corresponding experimental data of Johnson et al. (1990). The rest of parameters 
used in this simulation are the same as those of figure 4. Figure 5(a) shows that the 
calculated velocity profile is in reasonable agreement with the experimental data. A 
significant amount of slip at the wall is also noticed in the experiment which is well 
predicted by the model. The calculated solid volume fraction profile in figure 5(b) 
remains roughly a constant, except for its rapid decrease in the saltation region and a 
decreasing trend in the shearing zone near the wall. The calculated mean solid volume 
fraction is V = 0.547, while the experimentally reported value was about 0.61. Figure 
5(c) shows the SR-fluctuation kinetic energy profile has a large value near the wall 
and decreases with distance from the chute surface. Based on the general agreement 
of the model predictions with the experimental data in figure 5 one can conclude that 
the (continuum) model equations are applicable to cases with surprisingly low H / d  
ratios. 

Using a molecular dynamic method (MD), Walton (1992) studied gravity flows of 
1 mm diameter frictional spheres on a frictional 17" incline. His simulation results 
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FIGURE 8. As figure 7 but for r = 0.8, H / d  = 30. 

for the mean velocity and solid volume fraction profiles are reproduced in figure 6. 
The corresponding fluctuation kinetic energy profile was not reported by Walton. 
The present model predictions for H / d  = 9, r = rw = 0.85 and p = pw = 0.4 which 
are identical to those used by Walton are also plotted in this figure for comparison. 
The flat frictional wall considered in Walton's simulation is modelled as bumpy 
boundary conditions with B = 0 and d^ = 10. That is, the wall particles are ten 
times smaller than the flow particles and are tightly packed. Figure 6 shows that the 
model predictions are in reasonable agreement with Walton's results. The exception 
is the discrepancy observed in the velocity profile near the wall. Here the predicted 
mean velocity overestimates the simulation data. In particular, the wall slip velocity 
is overpredicted. This discrepancy may be attributed to the inaccuracy of the bumpy 
wall boundary conditions used in the model. 

The present model predictions are compared with the simulation results of Camp- 
bell & Brennen (1985) for gravity flows of two-dimensional non-frictional circular 
disks in figures 7 and 8. The smooth boundary surface used in the simulation of 
Campbell & Brennen is modelled by taking the wall parameters as B = 0 and d^ = 10. 
The other parameters used in the present computation (which are shown on the 
figures) are identical to those of Campbell & Brennen. From figures 7(a)  and 8(a), 
it is observed that the predicted non-dimensional mean velocity profiles are in good 
agreement with the molecular dynamics (MD) simulation results. For comparison, 
in figures 7(b)  and 8(b) the two-dimensional solid volume fraction v2D of Camp- 
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FIGURE 9. Non-dimensional (a)  mean velocity, ( b )  solid volume fraction and (c )  SR-fluctuation 
kinetic energy profiles for a gravity chute flow with M. = 20.1", 9 = 0.414, d^ = 0.5, r = 0.8, 
r,. = 0.95, p = p,+ = 0, H l d  = 23. Comparison with the simulation results of Oyediran et al. (1994). 
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FIGURE 10. As figure 9 but for H l d  = 14. 

bell & Brennen is also converted into the equivalent three-dimensional data using 

agreement exists, the predicted solid volume fraction profiles show some deviation 
from the simulation results. As noted before, the model is for spherical particles, 
while the MD simulation of Campbell & Brennen was for circular disks, and it 
may have deviated somewhat from the steady-state condition. Therefore, some dif- 
ferences should be expected. Figures 7(c) and 8(c) show the model predictions for 
SR-fluctuation kinetic energy profiles. It is observed that the fluctuation energy is 
rather large near the boundary and decreases sharply up to about 10% of the layer 
height. Then it follows a slowly decreasing trend up to the free surface. Unfortunately, 
the corresponding MD simulation results in this case were not reported by Campbell 
& Brennen for comparison. 

In figures 9 and 10, the present model predictions are compared with the model of 
Oyediran et al. (1994) for gravity flows of non-frictional spheres down a chute with 
an inclination angle of 20.7". The bumpy wall parameters used are B = 0.414 and 
d* = 0.5. The particle-particle and particle-wall restitution coefficients are taken as 
r = 0.8 and rw = 0.95, the same as those used by Oyediran et al. (1994). Figure 9 
shows the mean velocity, solid volume fraction and SR-fluctuation kinetic energy for 
a dilute case with an average solid volume fraction of V = 0.107 and a granular height 
of H / d  = 23. The results corresponding to a relatively dense flow with V = 0.444 

v3D = 4v,, 312 /371'12, as was suggested by Campbell & Gong (1986). While qualitative 
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FIGURE 11. Variations of (a)  velocity, ( b )  solid volume fraction and ( c )  SR-fluctuation kinetic energy 
profiles for different inclination angles for a chute flow with 3 = 0, d = 1, H / d  = 20, r = rw = 0.9, 
p = pw = 0. 

and H / d  = 14 are shown in figure 10. These figures show that the present model 
predictions are in good agreement with the results of Oyediran et al. (1994). 

Mean velocity, solid volume fraction and SR-fluctuation kinetic energy profiles of 
non-frictional particle chute flows are displayed in figure 11. Three different inclination 
angles are considered and the other parameters are kept fixed at r = rw = 0.9, B = 0, 
d^ = 1 and H / d  = 20. The velocity profiles shown in figure l l(a) indicate that a large 
degree of slip at the bottom wall occurs. As the inclination angle increases, the mean, 
as well as the slip velocities, also increase, while the solid volume fraction decreases. 
The flow is also very sensitive to changes of the inclination angle, since a small change 
in a can have a dramatic effect on the flow properties. Saltation regions with very 
low solid volume fraction near the free surface are also clearly observed. The height 
of the saltation region increases as the inclination angle increases. Figure l l(a) also 
shows that the mean velocity is roughly constant in the saltation region. 

Figure l l (b)  shows that the flow maintains a region of low density near the bottom 
wall. This phenomenon was observed experimentally in chute flows by Bailard (1978) 
and Ridgway & Rupp (1970) and in slurry flows by Shook et al. (1968). The 
molecular dynamic simulations of Campbell & Brenner (1985) and Walton (1992) 
and the theoretical model of Oyediran et al. (1994) also show similar trends of 
variation. The experimental data of Drake & Shreve (1986) and the corresponding 
model prediction shown in figure 3(b), however, show a peak concentration at the 
wall. These results indicate that the presence of a rough wall and frictional particles 
leads to a roughly monotonic increase of solid volume fraction toward the wall, 
while peak concentration for smooth wall and/or frictionless particle occurs at some 
distance from the wall. 

Variations of the non-dimensional SR-fluctuation kinetic energy, w, are shown in 
figure ll(c). It is observed that there is a region of large fluctuation energy near the 
wall. This is because one main source of the fluctuation energy production is the 
collisions between particles and wall and the occurrence of the slip velocity. Thus, 
the highest fluctuation energy is found in the neighbourhood of the wall. Away from 
the wall, the fluctuation kinetic energy generally decreases and reaches its minimum 
value at the free surface. This behaviour is quite different from that for frictional 
particles which maintain a region of low fluctuation energy near the wall as shown in 
figure 3. Figure l l ( c )  also shows that as the inclination angle of the chute increases, 
the fluctuation kinetic energy increases. 
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FIGURE 12. Variations of (a) non-dimensional normal and ( b )  tangential stresses for different 
inclination angles for a chute flow with 9 = 0, d = 1, H l d  = 20, r = r ,  = 0.9, p = pw = 0. 
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FIGURE 13. Variations of (a) non-dimensional energy dissipation, (b)  energy production and 
(c) fluctuation energy flux for different inclination angles for a chute flow with 9 = 0, d^ = 1, 
H l d  = 20, r = Y, = 0.9, p = p, = 0. 

For the conditions of figure i1, the variations of non-dimensional normal stress, 
fi = N/(podg) ,  tangential stress, S = S/(podg),  energy dissipation, 2 = p ~ / [ p ~ ( d g ) ~ / ~ / d l ,  
energy production, f' = idli/dy, and fluctuation energy flux, Z? = K ~ / [ p o ( d g ) ~ / * ] ,  are 
shown in figures 12 and 13. Figure 12 shows that the normal and tangential stresses 
have their highest values at the wall, and their magnitudes decrease with increasing 
distance from the wall. As the inclination angle increases, the non-dimensional nor- 
mal and tangential stresses decrease. Figure 13 shows that the energy production, 
the energy dissipation and the fluctuation energy flux, generally, increase toward the 
wall. It is also observed that the energy dissipation and production rates decrease 
as x increases, while the fluctuation energy flux increases very near the wall and 
decreases at distances away from the wall. Figures 12 and 13 show that the normal 
and tangential stresses, the energy production and disspation rates and the fluctuation 
energy flux are very small in the saltation region. 

The effects of frictional energy losses on chute flows are studied and the results 
for different wall-particle spacings are presented in figures 14 and 15. Here p is 
varied, while the other parameters are kept fixed at H/d=16, c1 = 42.75", L? = 1 and 
r = rw = 0.84. Figures 14(a) and 15(a) shows variations of the mean velocity profile 
with height for different friction coefficients. It is observed that the slip velocity 
decreases when the friction coefficient increases. The amount of decrease of slip 
velocity with p is significantly enhanced as wall roughness (9) increases. 
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FIGURE 14. Variations of (a)  mean velocity, ( b )  solid volume fraction and (c) SR-fluctuation kinetic 
energy profiles for different friction coefficients for a gravity flow with CI = 42.75", rw = r = 0.84, 
pw = p, B = 0, d^ = 1, H / d  = 16. 
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FIGURE 15. As figure 14 but for 3 = 0.4 

Figures 14(b) and 15(b) indicate that as p increases, the solid volume fraction 
increases. For a low value of friction coefficient, the flow has a region of low 
solid volume fraction near the wall, and v increases with distance from the wall 
to a certain maximum. It then decreases and becomes quite small in the saltation 
region. For a high value of friction coefficient, however, the solid volume fraction 
decreases monotonically with distance from the bed. As noted before, both increasing 
and decreasing trends of variation of v with distance from the bed were observed 
experimentally. The present results suggest that the combination of frictional loss of 
energy and wall roughness controls the resulting behaviour. Based on figures 14 and 
15, there appears to be a specific range of friction coefficients for which the transition 
between these two flow patterns occurs. The transition friction coefficient varies 
with the wall roughness. For B = 0.4, figure 15(b) shows that the transition friction 
coefficient is about 0.2, while figure 14(b) (for B = 0) indicates that the transition 
occurs for p close to 0.3. 

The fluctuation kinetic energy variations with p and B are shown in figures 14(c) and 
15(c). These figures show that as p increases, the fluctuation kinetic energy decreases. 
A change in friction coefficient strongly affects the fluctuation energy profile near the 
wall. The trend of variation, however, is opposite to that observed for v. For a small 
friction coefficient, k is rather large near the wall and decreases sharply with distance 
from the wall up to about 20% of the height and then decreases gradually toward 
the free surface. For a high value of friction coefficient, however, fluctuation energy is 
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FIGURE 17. Effects of particle-particle restitution coefficient r on (a) mean velocity, ( b )  solid 
volume fraction and (c) SR-fluctuation kinetic energy profiles for a bumpy chute with tl = 17", 
3 = 0, d = 1, rw = 0.9, p = pw = 0, H / d  = 20. 

low near the wall and increases with distance from the wall to a maximum and then 
decreases gradually toward to the free surface. 

For frictional granules, the non-dimensional energy dissipation, energy production 
and fluctuation energy flux are shown in figure 16. The friction coefficient p = pw 
is varied, while the other parameters which are listed in the figure caption are kept 
fixed. It is observed that the energy dissipation decreases with the distance from the 
wall. Furthermore, both dissipation and production increase as friction coefficient 
increases, with $ increasing at much faster rate. For a small friction coefficient, 
the maximum energy production occurs at the wall, and f' decreases with distance 
from the wall. For a relatively large friction coefficient, however, the peak energy 
production occurs at some distances from the wall. Near the wall region, figure 
16(c) shows that the energy flu: switches sign at certain value of (transition) friction 
coefficient. Here for p < 0.21, K is positive indicating that the production of energy 
near the wall exceeds the dissipation rate. Thus, flu$uation energy flows from the 
wall toward the free surface. For p > 0.21, however, K is negative near the wall. This 
implies that f' is larger than C at some distance away from the wall and fluctuation 
energy diffuses toward the wall. These observations are consistent with the trend of 
variation of fluctuation energy profiles shown in figure 15(c). 

Typical results for different values of coefficient of restitution, r ,  are shown in figure 
17. The parameters used in the numerical calculation are listed in the figure caption. 
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FIGURE 18. Variations of (a) velocity, (b )  solid volume fraction and (c) SR-fluctuation kinetic 
energy profiles for different roughness parameter s  ̂ (s/a) for a chute flow with d^ = 1, r = r, = 0.9, 
pw = p = 0, H l d  = 20, CI = 17". 
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FIGURE 19. As figure 18 but for different roughness parameter a / d  (2-l). 

It is observed that higher values of restitution coefficient r tend to increase the mean 
velocity and the corresponding slip at wall, as well as the fluctuation kinetic energy. 
The solid volume fraction, however, decreases as the particles become more elastic. It 
is also observed that the velocity, solid volume fraction and fluctuation kinetic energy 
are more sensitive to the variation of r as the restitution coefficient becomes closer to 
one. 

As noted in $3, the wall roughness can be adjusted by changing parameters B 
or 2. The variations of mean velocity, solid volume fraction and SR-fluctuation 
kinetic energy with wall roughness parameters are shown in figures 18 and 19. The 
other parameters used in the simulation are listed in the figure captions. When B 
increases or 2 decreases, the boundary becomes more rough, and both the mean 
and the slip velocities decrease. However, the heights of the saltation region remain 
nearly unchanged. From figures 18(b) and 19(b), it is observed that the solid volume 
fraction increases and the SR-fluctuation kinetic energy decreases as $ increases or d^ 
decreases. Figures 18(c) and 19(c) show that the fluctuation kinetic energy remains 
nearly unchanged at some distance away from the wall. 

7. Conclusions 
A kinetic model that includes the frictional energy losses and the extended kinetic- 

based boundary condition was used to numerically study gravity granular flows down 
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an inclined bumpy chute. Based on the presented results, the following conclusions 
may be drawn: 

(i) Steady granular gravity flow could be achieved at an arbitrary inclination 
angle for rough bumpy frictional chutes. 

(ii) The present computational model is capable of predicating the features of 
gravity-driven rapid granular flow, and the model predictions are in good agreement 
with the available experimental data and digital simulation results. 

(iii) The velocity profiles of gravity granular flow down an inclined bumpy chute 
generally consist of two parts, a roughly parabolic region with a significant slip at 
the wall and a saltation region with nearly constant velocity. 

(iv) For rapid granular gravity flows of frictionless particles in the collision- 
dominant (grain-inertia) regime over a smooth incline, the solid volume fraction 
remains somewhat low near the wall, increases to a maximum at some distance from 
the wall, and then decreases gradually to zero at the free surface. For highly frictional 
particles and rough walls, the solid volume fraction increases monotonically with 
depth, and its peak value occurs at the wall. These trends of variation are well 
predicted by the present model. 

(v) In the saltation region near the diffused free surface, the solid volume fraction 
is very low. 

(vi) At the wall, there is a large rate of generation of fluctuation kinetic energy 
due to the occurrence of slip velocity and a region of high velocity gradient. As 
a result, the fluctuation kinetic energy is quite high near the wall. For frictionless 
granules and smooth walls, the peak fluctuation energy and its maximum production 
rate occur at the wall. For frictional particles and rough walls, these peaks move to 
some short distances away from the wall. 

As the 
inclination angle increases, the mean velocity and the corresponding slip increase 
rapidly, while the solid volume fraction decreases. 

(viii) The flow depth has a significant effect on the behaviour of granular flow. As 
the flow depth increases, the velocity and the slip velocity decrease, while the solid 
volume fraction and the fluctuation kinetic energy increase. 

(ix) Effects of frictional energy losses during particleeparticle and particleewall 
collisions are important. As friction coefficient increases, the height of the saltation 
region and the slip velocity decrease, and the solid volume fraction profile becomes 
more flat. 

(x) The combination of frictional energy loss and wall roughness strongly affects 
the trends of variation of solid volume fraction and fluctuation energy profiles in 
granular gravity flows. A small friction coefficient and a smooth wall lead to a 
region of low density and high fluctuation energy in the neighbourhood of the wall. 
For high friction coefficients and rough walls, the solid volume fraction increases 
monotonically up to the wall, while a region of low fluctuation energy is formed near 
the solid surface. 

(xi) As the restitution coefficient r increases, the velocity and the slip velocity, 
as well as the fluctuation kinetic energy, increase, while the solid volume fraction 
decreases. 

(xii) The surface roughness significantly affects the velocity, solid volume fraction 
and fluctuation kinetic energy profiles. As s/o decreases or o/d increases, the mean 
velocity, the slip velocity and the fluctuation kinetic energy decrease, while the solid 
volume fraction increases. 

(vii) The flow is quite sensitive to variation of the inclination angle. 
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Appendix A. Order of rotational fluctuation energy 
The purpose of this Appendix is to evaluate the order of rotational fluctuation 

kinetic energy relative to the translational one. 
Suppose particle A with a velocity v1 and spin w1 collides with a fixed particle B. 

(For simplicity, it is assumed that particle B is fixed, but the results also apply when 
particle B is moving.) Let 212 and w2 denote the velocity and spin of particle A after 
the collision. Balance of momentum and angular momentum during collision implies 
that 

lt Ndt - m(u2 - v 1 )  = mu‘, 

Tdt - 1(02  - 01) = Io’, (A 2) 

where m and d are mass and diameter of particle, A, N and T are the normal and 
tangential forces acting on the particle, I = &md2 is the moment of inertia, and At is 
the time duration of collision. Here u’ and w’ are the order of the particle fluctuation 
velocity and spin. The normal and tangential forces are related by 

T < p N ,  (A 3) 

where p is the contact frictional coefficient. 
Using (Al) and (A3), equation (A2) may be restated as 

I w‘ - pmv’d, (A 4) 

or 
V’ 

0’ - p 2 .  
Therefore, the ratio of the rotational fluctuation kinetic energy to the translational 
fluctuation kinetic energy is given as 

Io” d2cor2 
mur2 U ’ ~  

- P2 - N -  

Thus the ratio of rotational fluctuation kinetic energy to the translational one is of 
the order of p2, and becomes negligible for a small frictional coefficient. 

Appendix B. Boundary conditions for a slightly frictional bumpy wall 
In this Appendix, the boundary conditions for a bumpy wall and granules with 

small inelasticity and friction are derived. The expressions for the rate of momentum 
supply to the granular flow, M ,  and the rate of energy dissipation D due to boundary- 
flow collisions per unit area are also evaluated. The geometry of the bumpy boundary 
is shown in figure 1, and it is assumed that the wall is moving with a velocity U .  



218 J .  Cao, G. Ahmadi and M. Massoudi 

The velocity c’ of the centre of a flow particle immediately after the collision is 
related to its velocity c immediately before the collision through 

C’ = c + - Fdt,  1, 
where F is the impact force, At is the duration of collision and m is the mass of the 
flow particle. For nearly elastic particles and a small coefficient of friction, p,, the 
impulse per unit mass is given as (e.g. Ahmadi & Shahinpoor 1983) 

where r ,  is the coefficient of restitution, k is the unit vector directed from the centre 
of the wall sphere toward the centre of the flow particle, t is the unit tangent to the 
spheres in the plane of g and k,  and g = U - c is the relative velocity of the particle 
centres just before the collision. Since t is also perpendular to k,  it follows that 

In the derivation of (B2), it was assumed that the frictional slip occurs during the 
collisions, and the rotational effects are negligible for small friction coefficients and 
small granules as described in Appendix A. Using (B2), equation (Bl) may be restated 
as 

Therefore, 
C’ = c + (1 + r w ) ( g  - k)(k + p,t). (B 4) 

c ’ ~  = c2 + 2(1+ r , ) ( g  - k ) [ ~  - ( k  + p,t)] 

-(I - r 3 ( g  - k)2  - 2pd1  + r w k 7  - k)(g - t ) ,  (B 5) 

where the p i  term is neglected. 
Let f ( c ,  Y, t )  be the velocity distribution function at position Y and velocity c 

and y = y ( c )  be a property associated with a flow particle, and A y  = y(c’) - y ( c )  
denotes its change due to a collision with a wall particle. Then, according to Jenkins 
& Richman (1985) and Richman (1988), for unit area of the wall the rate of change 
of y ( c )  in collisions, (C, is given by 

where oo = (d + 0)/2 is the distance from the centre of the wall particle to the centre 
of the flow particle. The integrations are to be taken over all angles it, -8 d < 0, 
and velocities c for which a collision is impending, g - k 2 0. 

When w = mc, according to (B4) Ay = m(c’ - c) = m(l + r , ) (g  - k)(k  + p,t), and 
the collisional rate of supply of momentum M to the flow per unit area of the wall 
is given as 

with 
M = M ‘ + M f .  (B 7) 

= mwcosec2H( 1 + r,)  /I k f ( c , v  + o&)(g - k)*didc, 
n 

(1 + r,)  11 t f ( c ,  Y + aok)(g - k)2dkdc. 
- p,mwcosec28 

M -  
n 
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Here the superscripts r and f ,  respectively, refer to the restitution (inelasticity) and 
the frictional effects. 

When y = :me2, and A y  = im(d2  - c2),  using (B5), the collisional rate of supply 
of energy E to the flow per unit area of the wall is given as 

E = M .  U -  D. (B 10) 

D = D ' + D f ,  (B 11) 

Here the expression for the energy loss, D ,  may also be decomposed as 

where 

I /  2pu,f(c, r + ook)(g k)*(g - t)dkdc. (B 13) 
ma( 1 + r,)cosec20 

2Tc 
Df = 

Note that in equation (B13), only the terms up to the first order in p, are retained. 

tion function, 
For non-frictional nearly elastic particles with a diameter d, using the the distribu- 

f ( c , r ,  t )  = n ( 2 7 ~ T ) - ~ / ~ [ l -  ( $ ~ B / T ~ ' / ~ T ~ / ~ C  - b - C ]  exp(-C2/2T), (B 14) 
Richman (1988) has shown that Mr, up to an error of order E ,  and D', up to an error 
of order c3l2, have the following forms: 

M: = ;(I + r,)puT Li + - COSO) c 
- cos O ]  + ( 2 / n y 2  00- 1 + B- I i j k  + LjI& ( :: [( f0) I} (B15) 

D' = (2/7~) ' /~(1-  r,)po(l + r , ) ~ ~ / ~ ( i  - cos O)cosec20, (B 16) 

where E = oo/L is a small quantity. Here L is a characteristic length of the mean field 
(Jenkins & Richman 1986). Therefore, only the frictional contributions, Mf and Df, 
need to be evaluated. 

Let 

9 = glk + g21+ g3m (B 17) 
where I ,  m and k are unit orthogonal vectors. Equation (B3) then implies 

Assuming that p, is of order 
(B9) up to an error of order E becomes 

and expanding f ( c , r  + oak) in terms of E ,  equation 

Noting that the terms in large parentheses in equation (B19) are zero, it follows that 

Mf = O .  (B 20) 
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Similarly, up to order E ,  Df as given by equation (B13) becomes 

(B 21) 

(B 22) 

Note that J dk = 274 1 - cos 0) and p = mn are used in the derivation of equation 
(B21). 

or 

Df = (2/7~)'/~(inp,)p0(1 + r,)T3/'(l - cos 0)cosec20. 

Using (B20) and (B22) in equations (B7) and (Bll) ,  it follows that for frictiona 
particles with a small frictional coefficient pw (of order Mi, is given as 

~i = + r,)pcc,T Ai + (2/n)'/2(2vi/3~'/2)[2cosec28(t - COSQ) 

(B 23 

and D is given by 

D = (2/7~) ' /~(1-  r ,  + inpw)po(l  + r , ) ~ ~ / ~ ( i  - cos B)cosec28. (B 24) 

Now restating the granular temperature T(= i k )  in terms of the fluctuation kinetic 
energy k ,  and using 1 + rw m 2 for nearly elastic particles, equations (B23) and (B24) 
are reduced to equations (15) and (16), when the factor of 71/4 is approximated as 
unity. 
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